
Efficient columnar storage in B-trees
Goetz Graefe

Hewlett-Packard Laboratories
Palo Alto, CA

Abstract
Column-oriented storage formats have been pro-

posed for query processing in relational data ware-
houses, specifically for fast scans over non-indexed
columns. This short note proposes a data compression
method that reuses traditional on-disk B-tree structures
with only minor changes yet achieves storage density
and scan performance comparable to specialized colum-
nar designs. The advantage of the proposed method over
alternative storage structures is that traditional algo-
rithms can be reused, e.g., for assembling rows with
multiple columns, bulk insertion and deletion, logging
and recovery, consistency checking, etc.

1 Introduction
Columnar storage has been proposed as a perform-

ance enhancement for large scans and therefore for rela-
tional data warehouses where ad-hoc queries and data
mining might not find appropriate indexes. The basic
idea for columnar storage is to store a relational table
not in rows but in columns, such that scanning a single
column can fully benefit from all the data bytes in a
page fetched from disk or in a cache line fetched from
memory.

The purpose here is to introduce a compression
method that permits reuse of traditional storage struc-
tures with minimal change yet with storage efficiency
comparable to specialized structures. Specifically, col-
umns are stored separately and each value is tagged
with the row to which it belongs, yet storage require-
ments for the tags are practically zero.

The goal is to replicate the performance effects of
vertical partitioning. The mechanisms do not prescribe a
specific policy, e.g., that all columns must be stored
individually such that there are as many partitions as
there are columns. Similarly, the mechanisms do not
prescribe policies by type, e.g., that fixed-length col-
umns or all columns of type “date” must be stored to-
gether. Finally, the mechanisms do not prescribe that all
columns must be stored using the mechanisms pro-
posed. Instead, the aim is to add another storage mecha-
nism to the options available in physical database de-
sign, and to maximize storage efficiency to the extent
possible. Policy decisions about usage of these mecha-

nisms should be left to physical design for each specific
database.

An alternative to vertical partitioning is to store
each column in its own index. If there is no single clus-
tered index that contains all columns for a particular
table, it seems moot to distinguish between clustered
and non-clustered indexes. In a way, it is multiple non-
clustered indexes together that hold entire rows. Assem-
bling entire rows, e.g., queries like “select * from …”,
requires joining these indexes.

However, if each of these indexes is sorted by the
column it contains, these join operation may be rather
slow and expensive. In order to avoid this expense, in-
dexes must be stored all in the same order. This order
might be called the order of the rows in the table, since
no one index determines it, and it is this order that the
present proposal captures in tags with practically zero
additional storage.

These tags are in many ways similar to row identi-
fiers, but there is an important difference between these
tags and traditional row identifiers: tag values are not
physical but logical. In other words, they do not capture
or represent a physical address such as a page identifier,
and there is no way to calculate a page identifier from a
tag value. If a calculation exists that maps tag values to
row address and back, this calculation must assume
maximal length of variable-length columns. Thus, stor-
age space would be wasted in some or all of the vertical
partitions, which would contradict the goal of columnar
storage, namely very fast scans.

Moreover, the design aims to reuse code and func-
tionality already available in most database systems as
much as possible. Since most database management
systems rely on B-trees for most of their indexes, reuse
and adaptation of traditional storage structures means
primarily adaptation of B-trees, including their space
management and their reliance on search keys. In order
to ensure that rows and their columns appear in the
same sequence in all B-trees, the search key in all in-
dexes must be the same. Moreover, in order to achieve
the objectives, the storage requirement for search keys
must be practically zero, which seems rather counter-
intuitive.

The proposed technique affects the tag column
only. The compression of actual column values is an
orthogonal topic, and the validity and effectiveness of
traditional compression techniques are not affected.

One particular usage patterns that is common in re-
lational data warehouses is bulk insertion and bulk dele-
tion, typically both in the order of time. The storage
structures considered here accommodate those opera-
tions rather well, because data is not organized by their
value but by a row tag or row identifier that is assigned
during initial insertion of each row in the table or data-
base.

2 Related work
The need for the proposed compression method was

inspired by [SAB 05]. Inasmuch as columnar storage
and columnar database management systems promise to
be broadly viable technically and economically for rela-
tional database management systems supporting online
analytical processing and data mining, database com-
pression of columnar storage is critically important for
performance and scalability. Moreover, code reuse and
adaptation is more cost-efficient than invention of new
storage structures followed by their design, implementa-
tion, testing, maintenance, etc.; therefore, our focus is
on implementing columnar storage with, essentially,
very traditional B-tree indexes.

The Decomposition Storage Model [CK 85], for
example, vertically partitions a table and stores each
column individually. Each resulting single-field record
is augmented with a tag or surrogate that indicates the
row within the logical table. Thus, a fair fraction of
storage is occupied by tags, in particular if the table’s
columns are small. Elimination of this space overhead is
the goal of the proposed compression technique.

The proposed compression technique is reminiscent
of the simple compression proposed in [GRS 98], and in
fact is similarly simple. However, their method was
designed primarily for “measures” rather than “keys”, to
employ two terms common in online analytical process-
ing. Measures are descriptive columns, e.g., size and
weight, and often amenable to compression using arith-
metic difference and variable-length integers [GRS 98].
In the specific application targeted here, the desired
method needs to compress keys or identifier columns.
Nonetheless, our method achieves compression compa-
rable to that for constant columns in [GRS 98], i.e.,
practically zero bits per value.

Achieving practically zero storage overhead for row
identifiers is quite similar to truncation of prefixes
common among keys within a B-tree node [BU 77].
Without doubt very effective where it applies, prefix
truncation also aids search performance, in terms of
both instruction path and cache faults [L 01]. Thus, our
method strives to achieve the same effect as prefix trun-
cation, although the key column in our application is not
constant but varies from record to record.

Columnar storage has been proposed for both on-
disk data structures and for in-page data organization,

the latter to improve the access patterns and perform-
ance in CPU caches [ADH 99]. In this note, let us ig-
nore the in-page data organization and focus instead on
B-trees in general, aware of the general concepts of ap-
plying traditional B-tree structure not only to disk pages
but also to cache lines [HP 03, L 01, RR 00] and to con-
tiguous extents on disk [O 92].

3 Tag column compression
The essence of our technique is quite simple. Rows

are assigned tag values in the order in which they are
added to the table. Note that tag values identify rows in
a table, not records in an individual partition or in an
individual index. Each tag value appears precisely once
in each index. All vertical partitions are stored in B-tree
format with the tag value as the leading key. The impor-
tant novel aspect is how storage of this leading key is
reduced to practically zero.

The essence of our technique is that in each B-tree
page, the page header stores the lowest tag value among
all B-tree entries on that page, and the actual tag value
for each individual B-tree entry is calculated by adding
this value and the slot number of the entry within the
page. There is no need to store the tag value in the indi-
vidual B-tree entries; only a single tag value is required
per page. If a page contains tens, hundreds, or even
thousands of B-tree entries, the overhead for storing the
minimal tag value is practically zero for each individual
record. If the size of the row identifier is 4 or 8 bytes
and the size of a B-tree node is 8 KB, the per-page row
identifier imposes an overhead of 0.1% or less.

If all the records in a page have consecutive tag
values, this method not only solves the storage problem
but also reduces “search” for a particular key value in
the index to a little bit of arithmetic followed by a direct
access to the desired B-tree entry. Thus, the access per-
formance in leaf pages of these B-trees can be even bet-
ter than that achieved with interpolation search or in
hash indexes.

If records in a page do not have consecutive tag
values, the proposed method does not work, at least not
immediately. There are multiple ways to design for pos-
sible gaps in the sequence of tags. One way is to pro-
hibit and avoid gaps, e.g., by means of a strict require-
ment that rows in the table are only appended at the end
or they are deleted only in the order in which they were
added. Gaps in the tag sequence within one index usu-
ally imply that the rows in the table lack consecutive tag
values and that the same problem exists in all B-tree
representing vertical partitions. Alternatively, gaps may
occur due to missing values or Null values.

A second way for dealing with gaps in the sequence
of tags is to retain ghost records in the B-tree pages.
During deletion of a single row in the table and the cor-
responding records in all the table’s indexes, the B-tree

entries are only pseudo-deleted, i.e., marked as “ghosts”
[JS 89] yet retained in the storage structure. This is al-
ready a standard way of ensuring successful transaction
rollback without possibility of failure due to problems in
space allocation, and queries already employ an implicit
predicate to ignore ghost records. The new requirement
due to the proposed compression scheme is that ghost
clean-up does not erase ghost records but instead cuts
their size to retain merely the B-tree key with no addi-
tional columns. Note that shortening ghost records to
their key is very space efficient due to our compression
scheme, because these key values are not stored for each
individual B-tree entry. Thus, only an entry in the
page’s indirection vector is wasted, but no space in the
page’s area for data bytes.

The considerations so far have covered only the B-
tree’s leaf pages. Of course, the upper index pages also
need to be considered. Fortunately, they introduce only
moderate additional storage needs. Storage needs in
interior nodes is determined by the key size, the pointer
size, and any overhead for variable-length entries. In
this case, the key size is equal to that of row identifiers,
typically 4 or 8 bytes. The pointer size is equal to a page
identifier, also typically 4 or 8 bytes. The overhead for
managing variable-length entries, although not strictly
needed for the B-tree indexes under consideration, is
typically 4 bytes for a byte offset and a length indicator.
Thus, the storage needs for each separator entry is 8 to
20 bytes. If the node size is, for example, 8 KB, and
average utilization is 70%, the average B-tree fan-out is
280 to 700. Thus, all upper B-tree pages together re-
quire disk space less than or equal to 0.3% of the disk
space for all the leaf pages, which is a negligible in
practice.

Compared to other schemes for storing vertical par-
titions, the proposed method permits very efficient stor-
age of variable-length values in the same order across
multiple partitions. Thus, assembly of an entire table is
very efficient using a multi-way merge join. In addition,
assembly of an individual row is also quite efficient,
because each partition is indexed on the row identifier.
All traditional optimizations of B-tree indexing apply,
e.g., very large B-tree nodes and interpolation search.
Note that interpolation search among a uniform data
distribution in practically instant.

The ability to store variable-length column values
very densely is another important characteristic of our
design, because it guarantees maximal scan perform-
ance. Like any B-tree structure, space management is
“built-in” with guaranteed minimal space utilization
[BM 70, BM 72], and efficient mechanisms for reor-
ganization and defragmentation are well known and
implemented in commercial products. Thus, there is no
cost or complexity for new storage structures. Without
doubt, this can be a decisive argument in a commercial
environment where all aspects of on-disk storage must

be considered, including concurrency control and re-
covery, bulk insertions and deletions, online index crea-
tion, index creation with allocation-only logging, verifi-
cation to guard against corruption due to hardware or
software faults, etc.

4 Additional applications
In the discussions above, a single table was parti-

tioned vertically and tags assigned per table. Alterna-
tively, a table may be partitioned in multiple steps. The
first step groups columns into subsets and sort order
defined for each subset. Tags are assigned based on this
sort order. The second step partitions each subset into
storage structures, e.g., B-trees on tag columns with the
compression feature described earlier. Thus, in this stor-
age architecture, the earlier discussions apply not to a
traditional logical table or view but to each vertical par-
tition of such a table or view.

In more traditional database settings, there are some
real-world business processes in which sequential num-
bers or identifiers are common, important, or even le-
gally required. For example, orders, invoices, cheques,
etc. fall into this category. For databases that describe
these real-world objects, indexes that map real-world
identifiers to additional information can benefit from the
compression method described. Even if there are large
gaps in the overall sequence, e.g., in vehicle identifica-
tion numbers, data in many index pages will be short
coherent sequences that may benefit. For small gaps,
ghost slots as described above might be sufficient.

In other words to maximize effective scan band-
width, column stores should be 100% full. Thus,
changes should be initially retained elsewhere using
techniques like differential files [SL 76] and then ap-
plied in bulk. For efficient capture, e.g., during bulk
loading, the changes should likely be in row format
rather than column format [SAB 05].

A recent study of master-detail clustering within B-
tree indexes [G 07] found that the proposed compres-
sion method applies even there. In other words, multiple
columns can be stored in a single B-tree in a column-
oriented format rather than the traditional row-oriented
form. Each column is assigned to key range within the
B-tree such that the individual columns are concate-
nated. Each record’s key consists of column identifier
and row identifier. After the column identifier has been
truncated using prefix truncation [BU 77], the row iden-
tifier can be truncated using the presented design. Even
recent insertions and deletions in row format can be
represented in the same B-tree in yet another key range.

Finally, independent of the scan performance in re-
lational data warehousing environments, vertical parti-
tioning and columnar storage using B-trees as described
automatically turns row-level locking into column-level
locking. Compared to prior designs for adapting row-

level locking to column-level locking [P 01], columnar
storage in B-tree indexes requires fewer software modi-
fications.

5 Summary
In summary, a very simple method exists that per-

mits storing vertical partitions in traditional B-tree in-
dexes with practically zero overhead for storage. Thus,
code reuse is maximized and cost of code development
and maintenance are minimized. Storage format and
record ordering permit very efficient assembly of many
rows using merge join and of individual rows using in-
dex nested loops join. In conclusion, it seems that the
described storage format is very promising for commer-
cial implementations of columnar storage for relational
tables and views.

References
[ADH 99] Anastassia Ailamaki, David J. DeWitt, Mark

D. Hill, David A. Wood: DBMSs on a Modern
Processor: Where Does Time Go? VLDB 1999:
266-277.

[BM 70] Rudolf Bayer, Edward M. McCreight: Organi-
zation and Maintenance of Large Ordered Indexes.
SIGFIDET Workshop 1970: 107-141.

[BM 72] Rudolf Bayer, Edward M. McCreight: Organi-
zation and Maintenance of Large Ordered Indices.
Acta Inf. 1: 173-189 (1972).

[BU 77] Rudolf Bayer, Karl Unterauer: Prefix B-Trees.
ACM TODS 2(1): 11-26 (1977).

[CK 85] George P. Copeland, Setrag Khoshafian: A
Decomposition Storage Model. SIGMOD 1985:
268-279.

[G 07] Goetz Graefe. Master-detail clustering using
merged indexes. To appear in Informatik Forschung
und Entwicklung.

[GRS 98] Jonathan Goldstein, Raghu Ramakrishnan,
Uri Shaft: Compressing Relations and Indexes.
IEEE ICDE 1998: 370-379.

[HP 03] Richard A. Hankins, Jignesh M. Patel: Effect of
Node Size on the Performance of cache-conscious
B+-trees. SIGMETRICS 2003: 283-294.

[JS 89] Theodore Johnson, Dennis Shasha: Utilization
of B-trees with Inserts, Deletes and Modifies.
PODS 1989: 235-246.

[L 01] David B. Lomet: The Evolution of Effective B-
tree: Page Organization and Techniques: A Per-
sonal Account. SIGMOD Record 30(3): 64-69
(2001).

[O 92] Patrick E. O'Neil: The SB-Tree: An Index-
Sequential Structure for High-Performance Sequen-
tial Access. Acta Inf. 29(3): 241-265 (1992).

[P 01] Nagavamsi Ponnekanti: Pseudo Column Level
Locking. ICDE 2001: 545-550.

[RR 00] Jun Rao, Kenneth A. Ross: Making B+-Trees
Cache Conscious in Main Memory. SIGMOD
2000: 475-486.

[SAB 05] Michael Stonebraker, Daniel J. Abadi, Adam
Batkin, Xuedong Chen, Mitch Cherniack, Miguel
Ferreira, Edmond Lau, Amerson Lin, Samuel Mad-
den, Elizabeth J. O'Neil, Patrick E. O'Neil, Alex
Rasin, Nga Tran, Stanley B. Zdonik: C-Store: A
Column-Oriented DBMS. VLDB 2005: 553-564.

[SL 76] Dennis G. Severance, Guy M. Lohman: Differ-
ential Files: Their Application to the Maintenance of
Large Databases. ACM TODS 1(3): 256-267 (1976).

