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Abstract 
Column-oriented storage formats have been pro-

posed for query processing in relational data ware-
houses, specifically for fast scans over non-indexed 
columns. This short note proposes a data compression 
method that reuses traditional on-disk B-tree structures
with only minor changes yet achieves storage density 
and scan performance comparable to specialized colum-
nar designs. The advantage of the proposed method over 
alternative storage structures is that traditional algo-
rithms can be reused, e.g., for assembling rows with 
multiple columns, bulk insertion and deletion, logging 
and recovery, consistency checking, etc. 

1 Introduction 
Columnar storage has been proposed as a perform-

ance enhancement for large scans and therefore for rela-
tional data warehouses where ad-hoc queries and data 
mining might not find appropriate indexes. The basic 
idea for columnar storage is to store a relational table 
not in rows but in columns, such that scanning a single 
column can fully benefit from all the data bytes in a 
page fetched from disk or in a cache line fetched from 
memory. 

The purpose here is to introduce a compression 
method that permits reuse of traditional storage struc-
tures with minimal change yet with storage efficiency
comparable to specialized structures. Specifically, col-
umns are stored separately and each value is tagged 
with the row to which it belongs, yet storage require-
ments for the tags are practically zero. 

The goal is to replicate the performance effects of 
vertical partitioning. The mechanisms do not prescribe a 
specific policy, e.g., that all columns must be stored
individually such that there are as many partitions as 
there are columns. Similarly, the mechanisms do not 
prescribe policies by type, e.g., that fixed-length col-
umns or all columns of type “date” must be stored to-
gether. Finally, the mechanisms do not prescribe that all 
columns must be stored using the mechanisms pro-
posed. Instead, the aim is to add another storage mecha-
nism to the options available in physical database de-
sign, and to maximize storage efficiency to the extent 
possible. Policy decisions about usage of these mecha-

nisms should be left to physical design for each specific 
database. 

An alternative to vertical partitioning is to store 
each column in its own index. If there is no single clus-
tered index that contains all columns for a particular 
table, it seems moot to distinguish between clustered 
and non-clustered indexes. In a way, it is multiple non-
clustered indexes together that hold entire rows. Assem-
bling entire rows, e.g., queries like “select * from …”, 
requires joining these indexes. 

However, if each of these indexes is sorted by the 
column it contains, these join operation may be rather 
slow and expensive. In order to avoid this expense, in-
dexes must be stored all in the same order. This order 
might be called the order of the rows in the table, since 
no one index determines it, and it is this order that the 
present proposal captures in tags with practically zero 
additional storage. 

These tags are in many ways similar to row identi-
fiers, but there is an important difference between these 
tags and traditional row identifiers: tag values are not 
physical but logical. In other words, they do not capture 
or represent a physical address such as a page identifier, 
and there is no way to calculate a page identifier from a 
tag value. If a calculation exists that maps tag values to 
row address and back, this calculation must assume 
maximal length of variable-length columns. Thus, stor-
age space would be wasted in some or all of the vertical 
partitions, which would contradict the goal of columnar 
storage, namely very fast scans.  

Moreover, the design aims to reuse code and func-
tionality already available in most database systems as 
much as possible. Since most database management 
systems rely on B-trees for most of their indexes, reuse 
and adaptation of traditional storage structures means
primarily adaptation of B-trees, including their space 
management and their reliance on search keys. In order 
to ensure that rows and their columns appear in the 
same sequence in all B-trees, the search key in all in-
dexes must be the same. Moreover, in order to achieve 
the objectives, the storage requirement for search keys
must be practically zero, which seems rather counter-
intuitive. 

The proposed technique affects the tag column 
only. The compression of actual column values is an 
orthogonal topic, and the validity and effectiveness of 
traditional compression techniques are not affected. 



One particular usage patterns that is common in re-
lational data warehouses is bulk insertion and bulk dele-
tion, typically both in the order of time. The storage 
structures considered here accommodate those opera-
tions rather well, because data is not organized by their 
value but by a row tag or row identifier that is assigned 
during initial insertion of each row in the table or data-
base. 

2 Related work 
The need for the proposed compression method was 

inspired by [SAB 05]. Inasmuch as columnar storage 
and columnar database management systems promise to 
be broadly viable technically and economically for rela-
tional database management systems supporting online 
analytical processing and data mining, database com-
pression of columnar storage is critically important for 
performance and scalability. Moreover, code reuse and 
adaptation is more cost-efficient than invention of new 
storage structures followed by their design, implementa-
tion, testing, maintenance, etc.; therefore, our focus is 
on implementing columnar storage with, essentially, 
very traditional B-tree indexes. 

The Decomposition Storage Model [CK 85], for 
example, vertically partitions a table and stores each 
column individually. Each resulting single-field record 
is augmented with a tag or surrogate that indicates the 
row within the logical table. Thus, a fair fraction of 
storage is occupied by tags, in particular if the table’s 
columns are small. Elimination of this space overhead is 
the goal of the proposed compression technique. 

The proposed compression technique is reminiscent 
of the simple compression proposed in [GRS 98], and in 
fact is similarly simple. However, their method was 
designed primarily for “measures” rather than “keys”, to 
employ two terms common in online analytical process-
ing. Measures are descriptive columns, e.g., size and 
weight, and often amenable to compression using arith-
metic difference and variable-length integers [GRS 98]. 
In the specific application targeted here, the desired 
method needs to compress keys or identifier columns. 
Nonetheless, our method achieves compression compa-
rable to that for constant columns in [GRS 98], i.e., 
practically zero bits per value. 

Achieving practically zero storage overhead for row 
identifiers is quite similar to truncation of prefixes 
common among keys within a B-tree node [BU 77]. 
Without doubt very effective where it applies, prefix 
truncation also aids search performance, in terms of 
both instruction path and cache faults [L 01]. Thus, our 
method strives to achieve the same effect as prefix trun-
cation, although the key column in our application is not 
constant but varies from record to record. 

Columnar storage has been proposed for both on-
disk data structures and for in-page data organization, 

the latter to improve the access patterns and perform-
ance in CPU caches [ADH 99]. In this note, let us ig-
nore the in-page data organization and focus instead on 
B-trees in general, aware of the general concepts of ap-
plying traditional B-tree structure not only to disk pages 
but also to cache lines [HP 03, L 01, RR 00] and to con-
tiguous extents on disk [O 92]. 

3 Tag column compression 
The essence of our technique is quite simple. Rows 

are assigned tag values in the order in which they are 
added to the table. Note that tag values identify rows in 
a table, not records in an individual partition or in an 
individual index. Each tag value appears precisely once 
in each index. All vertical partitions are stored in B-tree 
format with the tag value as the leading key. The impor-
tant novel aspect is how storage of this leading key is 
reduced to practically zero. 

The essence of our technique is that in each B-tree 
page, the page header stores the lowest tag value among 
all B-tree entries on that page, and the actual tag value 
for each individual B-tree entry is calculated by adding 
this value and the slot number of the entry within the 
page. There is no need to store the tag value in the indi-
vidual B-tree entries; only a single tag value is required 
per page. If a page contains tens, hundreds, or even 
thousands of B-tree entries, the overhead for storing the 
minimal tag value is practically zero for each individual 
record. If the size of the row identifier is 4 or 8 bytes 
and the size of a B-tree node is 8 KB, the per-page row 
identifier imposes an overhead of 0.1% or less. 

If all the records in a page have consecutive tag 
values, this method not only solves the storage problem 
but also reduces “search” for a particular key value in 
the index to a little bit of arithmetic followed by a direct 
access to the desired B-tree entry. Thus, the access per-
formance in leaf pages of these B-trees can be even bet-
ter than that achieved with interpolation search or in 
hash indexes. 

If records in a page do not have consecutive tag 
values, the proposed method does not work, at least not 
immediately. There are multiple ways to design for pos-
sible gaps in the sequence of tags. One way is to pro-
hibit and avoid gaps, e.g., by means of a strict require-
ment that rows in the table are only appended at the end 
or they are deleted only in the order in which they were 
added. Gaps in the tag sequence within one index usu-
ally imply that the rows in the table lack consecutive tag 
values and that the same problem exists in all B-tree 
representing vertical partitions. Alternatively, gaps may 
occur due to missing values or Null values. 

A second way for dealing with gaps in the sequence 
of tags is to retain ghost records in the B-tree pages. 
During deletion of a single row in the table and the cor-
responding records in all the table’s indexes, the B-tree 



entries are only pseudo-deleted, i.e., marked as “ghosts” 
[JS 89] yet retained in the storage structure. This is al-
ready a standard way of ensuring successful transaction 
rollback without possibility of failure due to problems in 
space allocation, and queries already employ an implicit 
predicate to ignore ghost records. The new requirement 
due to the proposed compression scheme is that ghost 
clean-up does not erase ghost records but instead cuts 
their size to retain merely the B-tree key with no addi-
tional columns. Note that shortening ghost records to 
their key is very space efficient due to our compression 
scheme, because these key values are not stored for each 
individual B-tree entry. Thus, only an entry in the 
page’s indirection vector is wasted, but no space in the 
page’s area for data bytes. 

The considerations so far have covered only the B-
tree’s leaf pages. Of course, the upper index pages also 
need to be considered. Fortunately, they introduce only 
moderate additional storage needs. Storage needs in 
interior nodes is determined by the key size, the pointer 
size, and any overhead for variable-length entries. In 
this case, the key size is equal to that of row identifiers, 
typically 4 or 8 bytes. The pointer size is equal to a page 
identifier, also typically 4 or 8 bytes. The overhead for 
managing variable-length entries, although not strictly 
needed for the B-tree indexes under consideration, is 
typically 4 bytes for a byte offset and a length indicator. 
Thus, the storage needs for each separator entry is 8 to 
20 bytes. If the node size is, for example, 8 KB, and 
average utilization is 70%, the average B-tree fan-out is 
280 to 700. Thus, all upper B-tree pages together re-
quire disk space less than or equal to 0.3% of the disk 
space for all the leaf pages, which is a negligible in 
practice. 

Compared to other schemes for storing vertical par-
titions, the proposed method permits very efficient stor-
age of variable-length values in the same order across 
multiple partitions. Thus, assembly of an entire table is 
very efficient using a multi-way merge join. In addition, 
assembly of an individual row is also quite efficient, 
because each partition is indexed on the row identifier. 
All traditional optimizations of B-tree indexing apply, 
e.g., very large B-tree nodes and interpolation search. 
Note that interpolation search among a uniform data 
distribution in practically instant. 

The ability to store variable-length column values
very densely is another important characteristic of our 
design, because it guarantees maximal scan perform-
ance. Like any B-tree structure, space management is 
“built-in” with guaranteed minimal space utilization 
[BM 70, BM 72], and efficient mechanisms for reor-
ganization and defragmentation are well known and 
implemented in commercial products. Thus, there is no 
cost or complexity for new storage structures. Without 
doubt, this can be a decisive argument in a commercial 
environment where all aspects of on-disk storage must 

be considered, including concurrency control and re-
covery, bulk insertions and deletions, online index crea-
tion, index creation with allocation-only logging, verifi-
cation to guard against corruption due to hardware or 
software faults, etc. 

4 Additional applications 
In the discussions above, a single table was parti-

tioned vertically and tags assigned per table. Alterna-
tively, a table may be partitioned in multiple steps. The 
first step groups columns into subsets and sort order 
defined for each subset. Tags are assigned based on this 
sort order. The second step partitions each subset into 
storage structures, e.g., B-trees on tag columns with the 
compression feature described earlier. Thus, in this stor-
age architecture, the earlier discussions apply not to a 
traditional logical table or view but to each vertical par-
tition of such a table or view. 

In more traditional database settings, there are some 
real-world business processes in which sequential num-
bers or identifiers are common, important, or even le-
gally required. For example, orders, invoices, cheques, 
etc. fall into this category. For databases that describe 
these real-world objects, indexes that map real-world 
identifiers to additional information can benefit from the 
compression method described. Even if there are large 
gaps in the overall sequence, e.g., in vehicle identifica-
tion numbers, data in many index pages will be short 
coherent sequences that may benefit. For small gaps, 
ghost slots as described above might be sufficient. 

In other words to maximize effective scan band-
width, column stores should be 100% full. Thus, 
changes should be initially retained elsewhere using 
techniques like differential files [SL 76] and then ap-
plied in bulk. For efficient capture, e.g., during bulk 
loading, the changes should likely be in row format 
rather than column format [SAB 05]. 

A recent study of master-detail clustering within B-
tree indexes [G 07] found that the proposed compres-
sion method applies even there. In other words, multiple 
columns can be stored in a single B-tree in a column-
oriented format rather than the traditional row-oriented 
form. Each column is assigned to key range within the 
B-tree such that the individual columns are concate-
nated. Each record’s key consists of column identifier 
and row identifier. After the column identifier has been 
truncated using prefix truncation [BU 77], the row iden-
tifier can be truncated using the presented design. Even 
recent insertions and deletions in row format can be 
represented in the same B-tree in yet another key range. 

Finally, independent of the scan performance in re-
lational data warehousing environments, vertical parti-
tioning and columnar storage using B-trees as described 
automatically turns row-level locking into column-level 
locking. Compared to prior designs for adapting row-



level locking to column-level locking [P 01], columnar 
storage in B-tree indexes requires fewer software modi-
fications. 

5 Summary 
In summary, a very simple method exists that per-

mits storing vertical partitions in traditional B-tree in-
dexes with practically zero overhead for storage. Thus, 
code reuse is maximized and cost of code development 
and maintenance are minimized. Storage format and 
record ordering permit very efficient assembly of many 
rows using merge join and of individual rows using in-
dex nested loops join. In conclusion, it seems that the 
described storage format is very promising for commer-
cial implementations of columnar storage for relational 
tables and views. 

References 
[ADH 99] Anastassia Ailamaki, David J. DeWitt, Mark 

D. Hill, David A. Wood: DBMSs on a Modern 
Processor: Where Does Time Go? VLDB 1999: 
266-277. 

[BM 70] Rudolf Bayer, Edward M. McCreight: Organi-
zation and Maintenance of Large Ordered Indexes. 
SIGFIDET Workshop 1970: 107-141. 

[BM 72] Rudolf Bayer, Edward M. McCreight: Organi-
zation and Maintenance of Large Ordered Indices.
Acta Inf. 1: 173-189 (1972). 

[BU 77] Rudolf Bayer, Karl Unterauer: Prefix B-Trees. 
ACM TODS 2(1): 11-26 (1977). 

[CK 85] George P. Copeland, Setrag Khoshafian: A 
Decomposition Storage Model. SIGMOD 1985: 
268-279. 

[G 07] Goetz Graefe. Master-detail clustering using 
merged indexes. To appear in Informatik Forschung 
und Entwicklung. 

[GRS 98] Jonathan Goldstein, Raghu Ramakrishnan, 
Uri Shaft: Compressing Relations and Indexes. 
IEEE ICDE 1998: 370-379. 

[HP 03] Richard A. Hankins, Jignesh M. Patel: Effect of 
Node Size on the Performance of cache-conscious 
B+-trees. SIGMETRICS 2003: 283-294. 

[JS 89] Theodore Johnson, Dennis Shasha: Utilization 
of B-trees with Inserts, Deletes and Modifies. 
PODS 1989: 235-246. 

[L 01] David B. Lomet: The Evolution of Effective B-
tree: Page Organization and Techniques: A Per-
sonal Account. SIGMOD Record 30(3): 64-69 
(2001). 

[O 92] Patrick E. O'Neil: The SB-Tree: An Index-
Sequential Structure for High-Performance Sequen-
tial Access. Acta Inf. 29(3): 241-265 (1992). 

[P 01] Nagavamsi Ponnekanti: Pseudo Column Level 
Locking. ICDE 2001: 545-550. 

[RR 00] Jun Rao, Kenneth A. Ross: Making B+-Trees 
Cache Conscious in Main Memory. SIGMOD 
2000: 475-486. 

[SAB 05] Michael Stonebraker, Daniel J. Abadi, Adam 
Batkin, Xuedong Chen, Mitch Cherniack, Miguel 
Ferreira, Edmond Lau, Amerson Lin, Samuel Mad-
den, Elizabeth J. O'Neil, Patrick E. O'Neil, Alex 
Rasin, Nga Tran, Stanley B. Zdonik: C-Store: A 
Column-Oriented DBMS. VLDB 2005: 553-564. 

[SL 76] Dennis G. Severance, Guy M. Lohman: Differ-
ential Files: Their Application to the Maintenance of 
Large Databases. ACM TODS 1(3): 256-267 (1976). 


